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1. Introduction

The use of Monte Carlo event generators has become an essential part of all experimental

analyses, both in interpreting data from existing experiments and in the design and plan-

ning of future experiments. Given the crucial rôle which Monte Carlo simulations play in

experimental studies it is imperative that these simulations are as accurate as possible.

While the existing Monte Carlo event generators have been highly successfully over

the last twenty years, it was realised that a new generation of programs was necessary for

the LHC. The reasons for this were twofold: firstly a number of new ideas to improve the

accuracy of the simulations had been suggested e.g. [1 – 4]; secondly the existing programs

required major restructuring for long term maintenance and to allow new theoretical de-

velopments to be incorporated. Given the changing nature of computing in high energy

physics, the natural choice was to write these new programs in C++. A major effort is

therefore underway, in preparation for the LHC, to produce completely new event genera-

tors [5], as well as new versions of established simulations [6 – 10] in C++.
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As part of the process of writing the new HERWIG++ event generator [8 – 10] we wish

to improve many aspects of the simulation process. One area where improvements were

needed was in the simulation of particle decays, both of the fundamental particles produced

in the perturbative stages of the event and the decays of unstable hadrons. Several major

improvements have been made to the simulation of the decays: better modelling of the

matrix elements in hadronic decays; and full spin correlations between the production and

decay of particles [11]. Another problem with the particle decays in the FORTRAN version

of the HERWIG program was the absence of QED radiation, which we will address in this

paper.

In existing Monte Carlo simulations the production of QED radiation in particle decays

is normally simulated using an interface to the PHOTOS program [12 – 14]. This program is

based on the collinear approximation for the radiation of photons together with corrections

to reproduce the correct result in the soft limit [12, 13]. Recently, it has been improved to

include the full next-to-leading order QED corrections for certain decay processes [14].

Despite the success of PHOTOS it is based on the collinear approximation for photon

radiation. The production of radiation in these decays is normally simulated in the rest

frame of the decaying particle. The kinematics of many of the decays, particularly of the

unstable hadrons, is such that the energy of the decay products is not significantly larger

than their mass, in which case we do not expect the collinear limit to be a good approxima-

tion. However, there is always a soft enhancement for the emission of QED radiation. We

therefore chose to base the simulation of QED radiation in HERWIG++ on the YFS [15]

formalism for the resummation of soft logarithms. This formalism has the major advantage

that the exact higher-order corrections can be systematically included, indeed the majority

of the most accurate simulations including higher-order QED corrections are based on this

approach [16 – 23].

Another significant improvement arises from the use of the C++ programming lan-

guage and an object-oriented design for the program. The code framework governing de-

cays, in the HERWIG++ program, is arranged so that users can easily introduce the matrix

element for a particular decay mode using the C++ inheritance mechanism. This frame-

work also allows the inclusion of additional next-to-leading order matrix elements for both

standard HERWIG++ and user defined decays. This makes it possible for the leading-order

matrix elements and their higher-order corrections to be implemented in a systematic and

consistent manor, rather than relying on one program to handle the leading-order decay

and another for the higher-order corrections. This will be of particular importance for the

implementation of spin correlation effects. Moreover, it will be easier for users to introduce

new decays, including higher-order corrections, as they will only require knowledge of, and

make modifications to, one program rather than two.

Note that, in full generality, it is not possible to consider radiative corrections to pro-

duction and decay processes separately,1 the minimal requirement for such a treatment to

preserve gauge invariance is that the intermediate particle be on-shell. For most applica-

1The case of W boson production is a noteworthy example since it is both charged and unstable. This

case has been studied in detail in the context of the charged Drell-Yan process [24 – 30] as well as single W

production at LEP [31, 32].
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tions at hadron colliders we anticipate this to be a good approximation. At a technical level

this amounts to neglecting off-shell effects in propagator numerators and including finite

width effects in propagator denominators via an overall Breit-Wigner factor that multiplies

the squared amplitude (the so-called narrow width approximation). This approximation

is already in effect at the level of the tree amplitudes in the HERWIG++ generator, in

which spin correlation effects are transmitted from the production stage to the decay stage

according to the algorithm described in [1]. As the SOPHTY program is to dress tree-level

events generated by the HERWIG++ simulation, a more subtle treatment including off-shell

effects is beyond the scope of this work.

The same approximation scheme is adopted in many other generators e.g. the PHOTOS

and WINHAC [21] generators. Working in this approximation means that gauge invariance

of the QED corrections is then guaranteed by considering only the universal leading log

corrections to individualy decays in a cascade. Exact O (α) corrections, comprising of ad-

ditional non-factorizable corrections are process-specific, and are therefore the subject of

dedicated process-specific simulations; the SOPHTY paradigm is primarily one of univer-

sality and general applicability. Nevertheless, the dominant corrections are due to universal

soft and collinear enhanced terms.

In the next section we will present our master equation, based on the YFS formal-

ism, for the generation of QED radiation, for the specific case of particle decays. High

multiplicity i.e. greater than two body, particle decays are normally simulated as a series

of sequential two body decays in HERWIG++. We therefore concentrate on the cases of

the decay of a neutral particle to two charged particles and the decay of a charged par-

ticle to one charged and one neutral particle. In addition, we present algorithms for the

event generation, using the master equation, for these two cases. The inclusion of higher-

order corrections to the decays is then considered in section 3 followed by a discussion

of the results of the simulation. Finally we present our conclusions and plans for further

developments.

2. Algorithms

We begin by considering the n-body decay of a particle in the absence of photonic radiation.

The partial width for such a decay is given by

∫

dΓ0 =
1

2M

∫

dΦq (2π)4 δ4

(

p −
n

∑

i=1

qi

)

ραβMαM∗
β (2.1)

where

dΦq =
n

∏

i=1

d3qi

(2π)3 2q0
i

, (2.2)

M is the mass of the decaying particle, p is its four-momentum and qi is the momenta of

the ith decay product. We have also denoted the matrix element for the decay of a particle

with helicity α by Mα and ραβ represents the spin density matrix. In order to simplify

– 3 –
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the expressions we have suppressed the dependence of the matrix element on the momenta

of the decaying particle and the decay products. In practice we do not need to include

the spin density matrix when calculating the total width, if we wish to average over the

helicities of the decaying particles it is simply the identity matrix. However, inside the

HERWIG++ simulation it allows us to include the correlation effects for the decay.

In order to simulate the effects of additional QED radiation in the decay, we must

generalise (2.1) to include the effects of arbitrary numbers of photons. In principle this ex-

tension is straightforward; one simply replaces the matrix element and augments the phase

space. However, the matrix elements give rise to infrared divergences. The cancellation of

these soft divergences must be made explicit before the Monte Carlo integration over the

phase space can be performed.

In the YFS formalism this cancellation of the divergences is manifest to all orders in

perturbation theory. The cancellation relies on the fact that in the divergent, soft photon,

limit both real and virtual corrections, to any process, take the form of universal kine-

matic factors multiplying the amplitude for that process without the additional radiation.

In summing over all of the different soft photon contributions, these kinematic factors sep-

arately exponentiate, due to their universal nature. The resulting product of exponentials

is the manifestly finite YFS form factor [15]. Residual, non-factorizing, parts of the matrix

elements, which cannot be exponentiated, are naturally infrared finite.

Applying the YFS formalism to particle decays, by analogy to [33, 17, 18], we find that

radiation modifies the n-body decay rate (2.1) to

Γ =
1

2M

∞
∑

nγ=0

∫

dΦ
1

nγ!
eYtotal(Ω)

nγ
∏

i=1

S̃total (ki) ραβMαM∗
βC. (2.3)

This is the master equation from which we intend to generate the QED radiation, where

dΦ = dΦpdΦk (2π)4 δ4 (p − P − K) , (2.4)

K =
∑nγ

i=1 ki denotes the sum of photon momenta and P =
∑n

i=1 pi denotes the sum

of the primary decay products momenta. The momentum of the ith decay product is pi

(previously qi without the photon radiation), kj is the momentum of the jth photon, while

dΦp and dΦk are the associated phase space measures:

dΦp =

n
∏

i=1

d3pi

(2π)3 2p0
i

; (2.5)

dΦk =

nγ
∏

i=1

d3ki

k0
i

Θ (ki,Ω) .

The symbol Ω is used to denote the region of phase space inside which photons are soft

and unresolvable, we choose this to be the region
∣

∣

∣

~k
∣

∣

∣
< ω, with ω an energy cut-off. We

define Θ (ki,Ω) = 0 for ki ∈ Ω and Θ (ki,Ω) = 1 for ki 6∈ Ω. This definition of Ω is not

Lorentz invariant and in addition to specifying a value for ω we must specify the frame in

which it has this value.
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The total dipole radiation function

S̃total (k) =

n
∑

i<j

S̃ (pi, pj , k) (2.6)

is the sum of the individual dipole functions

S̃ (pi, pj , k) =
α

4π2
ZiθiZjθj

(

pi

pi · k
− pj

pj · k

)2

, (2.7)

where k is the four momentum of the photon, Zi is the charge of the ith particle in units

of the positron charge and θi = +1 (−1) if the momentum pi is outgoing (incoming).

Likewise, the YFS form factor [15], Ytotal (pi, pj ,Ω), is given in terms of the form factor

for pairs of charged particles

Ytotal (pi, pj,Ω) =
n

∑

i<j

Y (pi, pj ,Ω) . (2.8)

The YFS form factor for a pair of charged particles is given by

Y (pi, pj ,Ω) = 2α
(

ReB (pi, pj ,Ω) + B̃ (pi, pj)
)

, (2.9)

where B̃ij is the integral of the dipole radiation function over the soft photon phase space

B̃ (pi, pj ,Ω) =
1

8π2
ZiθiZjθj

∫

Ω

d3k
∣

∣

∣

~k
∣

∣

∣

(

pi

k · pi
− pj

k · pj

)2

. (2.10)

The virtual piece of the dipole

B (pi, pj) = − i

8π3
ZiθiZjθj

∫

d4k
1

k2

(

2piθi − k

k2 − 2k · piθi
+

2pjθj + k

k2 + 2k · pjθj

)2

, (2.11)

does not depend on the cut-off, it is plainly Lorentz invariant.

The form factors are given for the case of a neutral particle decaying to two charged

final-state particles in appendix A.1 and a charged particle decaying to one charged and one

neutral particle in appendix A.2, in the rest frame of the decay products. For the case of a

general moving frame only modifications to the Lorentz variant bremsstrahlung integrals

are needed, in the final step where we have simplified with ~pi = −~pj and Ei + Ej = M .

The corresponding B̃ij functions are given in a general frame in [34] and [21] respectively.

The factor C represents the total remainder of all of the matrix elements contributing

to the total decay width for the particle, including any number of photons, when the leading

soft divergent pieces are exponentiated and cancelled. The contents of C are referred to as

the infrared residuals, they are infrared finite and are written as a power expansion in the

electromagnetic coupling α.

To order α there are three infrared residuals: the leading-order matrix element
(

O
(

α0
))

, the finite remainder of the one loop correction to the leading-order process and
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the finite residual of the single photon emission matrix element. Using superscripts to

denote the order in α and subscripts to denote the number of emitted photons, we have

C = 1 +
1

ραα′MαM∗
α′



β̄1
0 (p, {pi}) +

nγ
∑

j=1

β̄1
1 (p, {pi} , kj)

S̃total (kj)
+ O

(

α2
)



 , (2.12)

where

β̄1
0 (p, {pi}) = ραβ

(

MαM1∗
V β + M1

V αM∗
β − 2αBtotalMαM∗

β

)

β̄1
1 (p, {pi} , k) = ραβ

(

1

2 (2π)3
M1

RαM∗1
Rβ − S̃total (kj)MαM∗

β

)

(2.13)

In (2.13) we use M1
R and M1

V to denote the O (α) corrections to the leading-order matrix

element (M) from single real and single virtual photon corrections. The extension of the

master formula to higher orders in the infrared residuals
(

β̄
)

is straightforward, it is only

limited by the usual technical difficulties associated with calculating Feynman diagrams

that involve many loops or legs.

In practice the leading-order matrix element is only strictly defined for the n-body

phase space, not the phase space with additional photons. We therefore need a procedure

which maps the momenta of the decay products after radiation, including the photons,

on to the momentum configuration of the decay products prior to the generation of any

radiation. Since the momenta of the primary decay products are to be generated first

before any QED radiation, according to the leading-order distribution, we can use these

momenta to calculate the leading-order matrix element.

In order to implement the theoretical framework of the master equation in an event

generator, one expects that a number of different algorithms must be devised to cope

with all possible decay multiplicities and charge configurations. In practice, due to the

way in which particle decays are simulated in HERWIG++, most of the decays will either

involve the decay of a charged particle to one charged and one neutral particle, or the

decay of a neutral particle to two charged particles. Furthermore, we anticipate that more

complicated decays will proceed via repeated applications and simple extensions of these

two types of decay. We therefore concentrate on these cases.

2.1 Final-final dipole

The purpose of this algorithm is to dress the decays, generated by the core HERWIG++

program, in which a neutral particle decays to two charged particles, with QED radiation.

The input to our algorithm therefore consists of the momenta and quantum numbers of

the parent particle and its children, distributed according to the leading-order differential

decay rate (2.1).

In addition to infrared singularities, the dipole functions (2.7) also exhibit mass singular

behaviour associated with small-angle photon emission from the charged particles, in the

massless limit. Therefore the angles of the radiated photons with respect to the dipole must

remain fixed throughout the event generation process in order to produce an efficient, stable

algorithm.

– 6 –
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In order to achieve this, we define the rest frame of the primary decay products and

generate the photons in this frame. In this respect our approach is similar to that used in

the KK event generator [20] for final-state radiation. Initially the photons are generated

according to the dipole functions, which have a simple form in this frame. Implicit in

the definition of the rest frame of the primary decay products (in this case the dipole) is

the fact that the incoming three-momentum of the decaying particle must be equal to the

total outgoing three-momentum of the photons. The three-momenta of the original decay

products are then rescaled (reduced) to ensure energy and momentum conservation.

A näıve application of the method outlined above will lead to spurious results. It is

important that we take into account the effects of the aforesaid choice of frame on the

phase-space integration measure. To do this we employ the method of integration over the

Lorentz group, as described in [35], to transform the phase-space measure in (2.3). We

start, by introducing the definition of the momentum of the decaying particle and the total

momentum of the primary decay products in terms of δ-functions, assuming the full phase

space is to be integrated over i.e.
∫

dΦ = (2π)4
∫

dΦpdΦkd
4pdsd4P2Mδ3 (p) δ

(

p2 − M2
)

(2.14)

δ4 (p − P − K) δ4

(

P −
n

∑

i=1

pi

)

δ
(

P 2 − s
)

.

Secondly we insert the identity
∫

d4X
2

s2
δ

(

X2

s
− 1

)

δ3

(

L−1 P√
s

)

= 1, (2.15)

where L−1 is the boost from the frame in which X =
(

X0, ~X
)

to the rest frame of X.

This identity, in conjunction with those already present in (2.14), constrains the boost L

to be the Lorentz transformation from the rest frame of the primary decay products (P )

to the rest frame of the decaying particle (p). We then change the integration variables,

by applying the Lorentz boost L to all of the momenta involved, which is trivial as most

of our expression (2.14) is Lorentz invariant. This gives
∫

dΦ = (2π)4
∫

dΦpdΦkd
4pdsd4Pd4Xδ3 (Lp) δ

(

p2 − M2
)

(2.16)

δ4 (p − P − K) δ4

(

P −
n

∑

i=1

pi

)

δ
(

P 2 − s
) 4M

s2
δ

(

X2

s
− 1

)

δ3

(

P√
s

)

.

Integrating over the four momentum P , X and p we obtain

∫

dΦ = (2π)4
∫

dΦpdΦkds
s

M2
δ
(

M2 − (P + K)2
)

δ4

(

P −
n

∑

i=1

pi

)

. (2.17)

The integral over s can then be performed giving,

∫

dΦ =

∫

dΦpdΦk

s

M2
(

1 + K0√
s

) (2π)4 δ4

(

P −
n

∑

i=1

pi

)

. (2.18)
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As we first generate the momenta of the other decay products according to the leading-

order matrix element we need to rewrite the integral in terms of the leading-order phase

space. This is achieved by rescaling the momenta of the decay products before radiation

to give the correct invariant mass for the decay products after the photon radiation. We

define a momentum rescaling factor, u, such that the three momenta obey ~qi = u~pi. The

momentum rescaling u is determined, by on-shell constraints, to be the solution of

n
∑

i

√

u2 |~qi|2 + m2
i −

√
s = 0, (2.19)

where m2
i = p2

i = q2
i .

The unitary algorithm techniques of [36] can be used to show that

∫

dΦpδ
4

(

P −
n

∑

i=1

pi

)

=

∫

dΦqδ
4

(

Q −
n

∑

i=1

qi

)

1

u3

(

M − ∑n
i=1

m2

i

q0

i

)

(√
s − ∑n

i=1
m2

i

p0

i

)

n
∏

i=1

q0
i u

3

p0
i

. (2.20)

With this result we can rewrite our phase space measure as

∫

dΦ =

∫

dΦqdΦk (2π)
4
δ4

(

Q −
n

∑

i=1

qi

)

s
3

2

M2 (
√

s + K0)

1

u3

(

M −
∑n

i=1
m2

i

q0

i

)

(√
s − ∑n

i=1
m2

i

p0

i

)

n
∏

i=1

q0
i u3

p0
i

. (2.21)

The decay width becomes

Γ =

∞
∑

nγ=0

1

nγ !

∫

dΓ0dΦkeYtotal(Ω)

nγ
∏

i=1

S̃total (ki) C
s

3

2

M2u3 (
√

s + K0)

(

M −
∑n

i=1
m2

i

q0

i

)

(√
s − ∑n

i=1
m2

i

p0

i

)

n
∏

i=1

q0
i u3

p0
i

(2.22)

with dΓ0 given by (2.1). Equation (2.22) allows the construction of an algorithm in which

the leading-order subprocess may be generated independently of and prior to QED radia-

tion.

Thus far we have treated the general case (an n body final state) but we will now

specialise to the case of a neutral particle decaying to two charged particles. In this case

the rescaling factor is u = |~p|/|~q| where |~p| is the magnitude of the momentum of the decay

products in their rest frame after the radiation and |~q| is the magnitude of the momentum

of the decay products in their rest frame before the radiation. In this case the total width

is

Γ =
∞

∑

nγ=0

∫

dΓ0dΦk
1

nγ !
eYtotal(Ω)

nγ
∏

i=1

S̃total (ki) C
√

s |~p|
M |~q|

(

1 +
K0√

s

)−1

, (2.23)

where

dΓ0 =
1

2M
dΩq2

|~q|
M

ραβMαM∗
β.

Up to now we have not made any approximations other than the truncation of the

infrared residuals at O (α). To simulate events using these results, (2.23) and (2.22),

we need to make some approximations in order to obtain a distribution which is fast

and efficient to generate by Monte Carlo methods. It is important to note that these
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simplifications are later exactly compensated by appropriate weighting and rejection of

events. Naturally the first simplification we make is to omit the higher-order, infrared

finite corrections represented by the factor C. We also neglect the factors associated with

the rescaling of the leading-order phase space. Both factors tend to one in the limit of

soft QED radiation and so neglecting them is reasonable, given that the vast majority of

photons produced will be soft. In addition to these two omissions we also approximate the

momenta p1 and p2 by the values they would have in the absence of any QED radiation,

q1 and q2, this approximation is justified on the same grounds. These simplifications give

the following crude distribution

Γcrude =
∞

∑

nγ=0

∫

dΓ0dΦk
1

nγ !
eY (q1,q2,Ω)

nγ
∏

i=1

S̃ (q1, q2, ki) . (2.24)

Since we are working in the dipole rest frame, ~q1 = −~q2, the kinematics simplify to

the extent that the dipole function is analytically integrable. Moreover it means the only

dependence of the QED part of (2.24) on q1 and q2 is through their masses. Consequently

we have the desired factorization that (2.24) is really a product of two separate integrals,

one for the leading-order decay and one for the QED radiation. The distributions may

therefore be generated independently. Defining

n̄ =

∫

d3ki

k0
i

Θ (ki,Ω) S̃ (p1, p2, ki) , (2.25)

we obtain

Γcrude = Γ0

∞
∑

nγ=0

1

nγ !
n̄nγe−n̄ = Γ0. (2.26)

In deriving (2.26) we have also made the approximation that the YFS form factor is

Y ≈ −n̄. According to Γcrude the photon multiplicity follows a Poisson distribution with

average n̄. In practice it is sometimes useful to neglect part of the dipole distribution as

described in appendix B.1.

Once such a decay has been generated in the main HERWIG++ code it may dressed

with QED radiation using the following algorithm:

1. The number of photons is generated according to a Poisson distribution with average

n̄.

2. The momenta of the photons is then generated as described in appendix B.1. This

gives the crude distribution.

3. The exact distribution (the master equation for Γ) is obtained using rejection tech-

niques. The weight for rejection is given by

W = Wdipole ×WYFS ×WJacobian ×Whigher, (2.27)

– 9 –
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where

Wdipole =

nγ
∏

i=1

S̃ (p1, p2, ki)

S̃ (q1, q2, ki)
,

WYFS =
eY (p1,p2,ΩB)

e−n̄
,

WJacobian =

√
s |~p|

M |~q|
(√

s + K0

)−1
,

Whigher = C. (2.28)

In practice the denominator of the dipole weight Wdipole is modified if we use the

modified dipole without the mass terms. We denote a cut-off on the energy of the

photons in the rest frame of the decay products as ΩB. We will consider the contri-

bution from the exact higher-order corrections in more detail in the next section.

4. There is one remaining complication. The photons are generated in the frame where

the decaying particle enters with momentum equal to the total photon momentum.

However, we wish to apply the energy cut-off in either the rest frame of the decaying

particles, or even the laboratory frame. There are a number of methods which we

could use to achieve this. The simplest would be to evaluate the YFS form-factor in

the rest frame of the decaying particle or the laboratory frame and veto any events

in which any of the photons are below the cut-off in the relevant frame. However,

this procedure can be inefficient if the veto removes a large number of events.

We instead choose to use the same procedure as [20]. In this approach we neglect
any photons which are below the energy cut-off in the relevant frame and apply an
additional weight

Wremove = exp (−Y12 (q1, q2, ΩB) + Y12 (q1, q2, Ω) + Y12 (p1, p2, Ω) − Y12 (p1, p2, ΩB)) ,

(2.29)

where Ω denotes the cut-off on the photon energies in either the rest frame of the

decaying particle or the laboratory frame.

For consistency in defining the infrared region, in applying this weight we do not

apply dipole weights for those photons whose energy is below the infrared cut-off.2

2.2 Initial-final dipole

In this subsection we describe our algorithm for dressing decays, in which a charged particle

decays to another charged particle and a neutral particle. As in the final-final dipole case,

the inputs to the algorithm are the momenta and quantum numbers of the parent particle

and its children, distributed according to the leading-order differential decay rate.

The situation here is less complicated than for the final-final dipole case because we

can use the neutral decay product to absorb the recoil due to the photonic radiation. This

allows us to simulate the radiation in the rest frame of the decaying particle. As with the

2In practice if we neglect the mass terms when generating the crude distribution we also need to include

the weight from (B.8) for the removed photons as part of the dipole weight in order to take this into account.
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final-final dipole we must also rescale the three-momentum of the charged particle in order

to have overall energy-momentum conservation.

As in the previous subsection, we begin by manipulating the phase-space measure in

order to factorize off a part of the integrand which can be interpreted as corresponding

to the leading-order process. Taking p1 to be the momentum of the charged particle in

the final state and integrating over the momentum |~p1| and ~p2, in the rest frame of the

decaying particle gives

Γ =
1

2M

∞
∑

nγ=0

∫

dΦ
1

nγ!
eY (p,p1,Ω)

nγ
∏

i=1

S̃ (p, p1, ki) ραβMαM∗
βC (2.30)

where

dΦ =
1

4 (2π)2
dΩp1

dΦk
|~p1|2

p0
1

(

|~p1| +
∣

∣

∣

~K
∣

∣

∣ cos θp1K

)

+ p0
2 |~p1|

. (2.31)

This can be rewritten as

Γ =

∞
∑

nγ=0

∫

dΓ0dΦk

|~p1|2 M

|~q1| p0
1

(

|~p1| +
∣

∣

∣

~K
∣

∣

∣ cos θ
)

+ |~q1| p0
2 |~p1|

1

nγ !
eY (p,p1,Ω)

nγ
∏

i=1

S̃ (p, p1, ki) C (2.32)

where

dΓ0 =
1

2M
dΩq1

|~q1|
4 (2π)2 M

ραβMαM∗
β. (2.33)

As before, by not changing the angles of the photons with respect to the dipole (in this case

the charged final-state particle) we have dΩp1
= dΩq1

. The generation of the leading-order

process (dΓ0) may proceed prior to, and independently of, the details of QED radiation.

That is to say that no changes need to be made to the existing decay program, the QED

algorithm for initial-final dipoles is universal in this respect. Momentum conservation and

on-shell conditions require that the momenta, after generation of the photons, are given by

p = q,

p1 =
(

√

ρ2~q2
1 + m2

1, ρ~q1

)

,

p2 =
(

M − K0 −
√

ρ2~q2 + m2
1,− ~K − ρ~q1

)

,

K =
(

K0, ~K
)

,

(2.34)

where the rescaling factor ρ is

ρ =
−

˛

˛

˛

~K
˛

˛

˛
cos θ1K

`

(p1 + p2)
2 + m2

1 − m2

2

´

+ (M − K0)
q

λ
`

(p1 + p2)
2
, m2

1
, m2

2

´

− 4m2

1
K2

⊥

2 |~q1|
`

(p1 + p2)
2 + K2

⊥

´ (2.35)

and K2
⊥ =

∣

∣

∣

~K
∣

∣

∣

2
sin2 θ1K .

The crude distribution, is obtained from the exact distribution (2.33) by dropping the

kinematic factor arising from integrating over the delta function and the higher-order non-

soft photon corrections in C. The momenta in the form factor and dipole functions are
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replaced by the values generated from the leading-order decay (~q1 = −~q2) giving the crude

distribution

Γcrude =

∞
∑

nγ=0

∫

dΓ0dΦk

1

nγ !
eY12(q,q1,Ω)

nγ
∏

i=1

S̃ (q, q1, ki) . (2.36)

The dependence of QED part of (2.36) on the momenta q and q1 is overstated here, in the

rest frame of the decaying particle the kinematics are so simple that this part only depends

on the masses q2 and q2
1. Therefore (2.36) is really a product of two independent integrals.

The simplified kinematics allow the integral over the photon momenta to be performed

analytically giving

n̄ =

∫

d3ki

k0
i

Θ (ki,Ω) S̃ (q, q1, ki) . (2.37)

We therefore obtain

Γcrude = Γ0

∞
∑

nγ=0

1

nγ !
n̄nγe−n̄ = Γ0. (2.38)

In obtaining this we have, as in the final-final dipole case, approximated Y ≈ −n̄. Once

again we have reduced the width to a simple Poisson distribution for the photon multiplicity.

The generation of the crude width proceeds in the same way as for the final-final

dipole. First we generate nγ according to the Poisson distribution and then the photon

momenta are generated according to the dipole functions (see appendix B.1). The form of

the rejection weights W is similar to those in section 2.1 equation (2.27) with the following

changes:

Wdipole =

nγ
∏

i=1

S̃ (q, p1, ki)

S̃ (q, q1, ki)
,

WYFS =
eY (q,p1,Ω)

e−n̄
,

WJacobian =
|~p1|2 M

p0
1

(

|~p1| +
∣

∣

∣

~K
∣

∣

∣ cos θ
)

|~q1| + p0
2 |~p1| |~q1|

,

Whigher = C. (2.39)

Unlike the the case of the final-final dipole, we do not need a photon removal step because

the decay is generated in the rest frame of the decaying particle.

3. Higher-order corrections

As stated in section 2, the effects of soft photons (photons with energy below the cut-off ω)

have been included to all orders through the YFS form factor. If one neglects the infrared

residuals in C, the effect of the master formula and algorithms is, for a given multiplicity, to

generate the QED radiation according to the dipole radiation functions only. This amounts

to approximating matrix elements for the decay p → p1 . . . pn +nγγ by a product of eikonal

factors multiplied by the leading-order matrix element. Ideally, we wish to include the

higher-order effects in C as far as possible.

Thus far our algorithms only require a set of momenta and their associated charges.

Unfortunately calculating C exactly to a given order in α requires knowledge of the matrix
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elements for the specific decay process to that order. The structure of HERWIG++ is

designed so that if these corrections are known they can be implemented. However, for

the majority of decays these corrections will not be available and in this case we need to

include the remaining enhanced contributions, i.e. the single collinear logarithmic terms.

Depending on the mass scales involved, one can obtain a good approximation to C by just

including these leading mass singular terms.

In the collinear limit, the squared matrix element for a process including a massless

emission, factorizes into the leading-order squared matrix element multiplied by a splitting

function. The splitting functions only depend on the spin of the particles involved. There-

fore if, in addition to the momenta and charges, we supply the program with the spins

involved in the decay, we may include the leading non-soft, collinear logarithms in C for

the real emission contributions.

In addition to affording us a way to include higher-order hard emission contributions in

a universal way, this approach has two further advantages. Firstly, as we shall describe in

more detail in section 3.2, in this approach we can readily obtain a good approximation to

the virtual corrections. Secondly, given the logarithms associated to the collinear emissions

are universal, they are necessarily gauge invariant.

3.1 Real emission corrections: β̄1
1

In the quasi-collinear limit,3 defined in [37], the matrix element including the emission of

an additional collinear photon factorizes as

∣

∣M1
R

∣

∣

2 ∼=
n

∑

i=1

e2Z2
i

pi · k
Pii |M|2 , (3.1)

where M is the matrix element for the leading-order process,
∣

∣M1
R

∣

∣

2
is the spin-averaged

matrix element with the inclusion of one additional photon, Zi is the charge of the emitting

particle, pi is the momentum of the emitting particle and k is the momentum of the emitted

photon. Pii is the Altarelli-Parisi splitting function for emission of a photon from particle

i, its form only depends on the spin of the emitting particle.

In [38] these splitting functions were used, together with the factorization of the ma-

trix element in the soft limit, to construct so-called dipole splitting functions for massive

particles. These terms have the correct behaviour in both the soft and quasi-collinear lim-

its and smoothly interpolate between the two, i.e. they reproduce the massive splitting

functions for (quasi-)collinear emissions and the soft photon, dipole, radiation functions

for soft emissions. We choose to use dipole-like terms based on the expressions in [38],

omitting some sub-leading terms which were included in [38] to allowed the functions to

be analytically integrated over the phase space of the emitted photon. With the dipole

subtraction terms we may write an approximation for the real emission matrix element

∣

∣M1
R

∣

∣

2 ≈ −e2
n

∑

i<j

ZiθiZjθj (Dij + Dji) |Mn|2 , (3.2)

3The quasi-collinear limit is the generalisation of the usual collinear limit to the case where the emitting

particle is massive.
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where indices i and j refer to the two particles forming the electric dipole and we have

applied the conservation of charge
∑n

i=0 θiZi = 0.

We adopt the convention that the first index on Dij refers to the particle in the dipole

which is considered to be emitting the photon, while the second index refers to the so-called

spectator particle. From here we may write down a leading collinear approximation for the

infrared finite residual β̄1
1

β̄1
1 = − α

4π2
ραβMαM∗

β

n
∑

i<j

ZiθiZjθj

[

D̄ij + D̄ji]
]

, (3.3)

where the D̄ij are the infrared subtracted counterparts of Dij ,

D̄ij = Dij −
1

pi · k

[

2pi · pj

(pi + pj) · k
− m2

i

(pi · k)

]

. (3.4)

For the case that both the emitter and spectator are in the final state, the dipole terms

are given by4

Dij =
1

pi · k

[

2pi · pj

(pi + pj) · k
− m2

i

pi · k

]

spin 0,

=
1

pi · k

[

pj · k
(pi + k) · pj

+
2pi · pj

(pi + pj) · k
− m2

i

pi · k

]

spin
1

2
,

=
1

pi · k

[

2 (pj · k) (pi · pj)

((pi + k) · pj)
2 +

2pj · k
(pj + k) · pi

+
2pi · pj

(pi + pj) · k
− m2

i

pi · k

]

spin 1.

(3.5)

For the case that the dipole is comprised of the decaying particle (which we shall denote

by index j) and one of its children, the Dij functions for emissions from the children are

taken to be the same as in (3.5). However, for the decaying particle, we assume that it

is sufficiently massive for us to neglect collinear enhancements, giving the following dipole

function

Dji =
1

pj · k

[

2pi · pj

(pi + pj) · k
−

m2
j

pj · k

]

spin 0,
1

2
, 1. (3.6)

Since the effects of collinear radiation from the decaying particle are neglected, only soft

emissions are taken into account and so this dipole function is independent of the parti-

cle’s spin. Furthermore, the infrared subtracted dipole splitting function, with the parent

particle as the emitter, is identically zero: D̄ji ≡ 0.

In the soft limit these expressions reproduce the expected eikonal result

Dij + Dji = −
(

pi

pi · k
− pj

pj · k

)2

(3.7)

and in the collinear limit the Dij equals the quasi-collinear splitting functions given in [37].

4It is not possible to construct a quasi-collinear limit for the spin-1 splitting function, for a massive

vector particle, in which the massless limit can be taken. We therefore use the corresponding expression

for the massless dipole splitting function, augmented by a mass term which produces the correct behaviour

in the soft limit.
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3.2 Virtual corrections: β̄1
0

At present we have only implemented virtual corrections for two special cases in the

SOPHTY code, those of initial-final and final-final dipoles with (relativistic) fermions in

the final state, as in W and Z boson decays. These corrections turn out to have a negligible

effect on distributions, compared to those of the real corrections. This is seen to be the case

even for W → e+νe and Z → e+e− decays where one expects such effects to be greatest.

As with the real emission we try to work in a universal way, without referring to the

details of the matrix elements, using the leading log approximation.

For both the case of the final-final dipole and the initial-final dipole the relevant vir-

tual processes are represented by the lowest-order diagram with a photon joining the dipole

constituents. On dimensional grounds, the large, leading logarithms of QED will be loga-

rithms of M2/m2
i . Also, if we regularize the infrared divergences by introducing a fictitious

photon mass mγ , logarithms of M2/m2
γ and m2

i /m
2
γ are possible.

The infrared divergences from virtual corrections, must cancel the infrared divergences

arising from the soft region of the photon phase space in the real emission process [39].

Likewise, terms diverging as m2
i → 0, so called mass/collinear divergences, must also

cancel between the real emission corrections and their virtual counterparts, this is the

KLN theorem [40, 41]. Using the fact that the mγ → 0 and m2
i → 0 divergent logarithms

have to cancel in this way, we can construct the leading log approximation to the loop

integrals.

To obtain the leading soft and collinear contributions to the virtual terms we therefore

return to the soft and collinear approximation that was used for the real emission matrix

element (3.2). We calculate the leading logarithms arising in the real emission contribution

by integrating the full dipole function over the full phase space for the emission of the

photon i.e. both the soft k0 < ω and hard k0 ≥ ω regions as was done in [38]. Performing

the relevant integrals and taking the small mass limit gives the contribution of the virtual

terms for the different types of dipole

dΓ|LL =
α

π

(

2

(

ln

(

M

mi

)

− 1

)

ln
(mγ

M

)

+ ln2

(

M

mi

)

+
1

2
ln

(

M

mi

))

dΓ0 (initial-final),

dΓ|LL =
α

π

(

2

(

ln

(

M2

m2
i

)

− 1

)

ln
(mγ

M

)

+
1

2
ln2

(

M2

m2
i

)

+
1

2
ln

(

M2

m2
i

))

dΓ0 (final-final).

(3.8)

These expressions agree, at the level of large logarithms, with those obtained by direct

calculation in [42] and [17]. From here we see that the β̄1
0 functions we require are, for the

initial-final dipole

β̄1
0 =

α

2π
ln

(

M2

m2
i

)

β̄0
0 , (3.9)

and for the final-final dipole,

β̄1
0 =

α

π
ln

(

M2

m2
i

)

β̄0
0 . (3.10)

For resonant Z → e+e− processes this number is around 6%, dropping to around 3% for

resonant Z → µ+µ− processes. The extension to other cases is obvious, it simply requires

the use of the scalar and vector splitting functions instead.
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Figure 1: The total energy (K0) of the photons radiated in Z boson decays to leptons: (a) shows

the K0 spectrum for the case that no infrared residuals are considered (C = 1); (b) shows the effect

of including the collinear approximation for the O (α) residual β̄1
1 .

4. Results

In this section we discuss the results from the SOPHTY program as implemented in

HERWIG++. In order to test the algorithm we will consider both leptonic Z and W boson

decays, due to their phenomenological importance. In addition we will consider a number

of important meson decays to demonstrate the application of the program to hadronic de-

cays. We reiterate that our approach simulates the soft photon corrections in the leading

log approximation which depends on nothing more than the momenta and charges of the

primary decay products, and simulation of hard collinear photons merely requires addi-

tional spin information. This being the case these examples represent a general test of our

methods.

The key distribution produced by the simulation is the total photon energy spectrum

(K0). This is shown for Z decays in figure 1 and for W decays in figure 2. We have

considered a large range of masses for the decay products, including a fictitious heavy

lepton (τ ′), to check for numerical instabilities and other irregular behaviour. For each

type of decay we show the results of our algorithm including only soft photon effects and

also with the dipole approximation for hard radiation. In all cases the amount of radiation

is seen to decrease smoothly as the mass of the decay products increases, this can be

understood from simple phase-space considerations.

One can also see that the inclusion of the dipole splitting functions (Dij) leads to an

enhancement of hard photon radiation. This enhancement is most prominent for lighter

decay products, for the heavier decay products the effect is negligible. Again, this is to be

expected as the mass of the emitting particle is known to screen the collinear divergence,

this can be seen by considering, for instance, the massive splitting functions in [37].

Including the hard collinear enhancements also reveals a kink in the total photon energy

spectrum. This kink occurs at a kinematic endpoint, beyond it all events must contain at

least two photons which recoil against each other, hence the histograms drop beyond this

value. Looking in this two photon region we also see that the photon multiplicity increases

as the mass of the primary decay products decreases.
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Figure 2: The total energy (K0) of the photons radiated in W boson decays to leptons; (a) shows

the K0 spectrum for the case that no infrared residuals are considered (C = 1); (b) shows the effect

of including the collinear approximation for the O (α) residual β̄1
1 .

Figure 3: The total energy (K0) of the photons radiated in W± → e±νe/ν̄e decays. In figure

(a) the red histogram was generated using the WINHAC [21] simulation, including exact O (α) real

emission corrections to the W± decay, while the black line was generated using the SOPHTY module

for QED radiation in HERWIG++. In figure (b) we show the difference between the spectra shown

in (a) divided by the associated statistical error. The discrepancy in the region beyond 40GeV

is exclusively comprised of events with at least two non-soft photons, which neither program is

designed to model well.

Changing the spin of the primary decay products does not affect the soft distributions

in figures 1a and 2a, it does however, influence the other distributions where hard collinear

photon effects are introduced. The program uses the other splitting functions in (3.5) to

account for this, although in the case that the decaying particle is a scalar there will be no

collinear enhancement since in this case D̄ij ≡ 0.

In figure 3 we compare the total photon energy spectrum for W → eνe decays as

generated by our program and that of the WINHAC generator. The agreement is seen

to be quite good except in the region beyond the kink at around 40 GeV. As mentioned

earlier, this region is populated exclusively by events with at least two hard photons. Con-

sequently neither simulation expects to model this accurately. A correct modelling of this
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Figure 4: The total energy (K0) of the photons radiated in the decays of neutral vector mesons

to pseudoscalar mesons for a number of different decays: (a) ρ → π+π−; (b) φ → π+π− and

φ → K+K−; (c) K∗0 → K±π∓; (d) J/ψ → π+π− and J/ψ → K+K−. In addition to using the

real physical masses of the decay products we have included the effect of varying the masses of the

decay products.

region will require the calculation of the infrared residuals (C) to O
(

α2
)

. This extension

may be implemented in future versions of the program. We note that WINHAC was been

independently compared with another simulation of the charged Drell-Yan process, HO-

RACE, in [43], where good numerical agreement between the different approaches to QED

radiation was recorded.

The total energy of the photons radiated in the decays of some neutral vector mesons

is shown in figure 4. Here we see that the energy distribution shows a behaviour that qual-

itatively resembles that seen in the case of the Z boson. In this case, as the decay products

are pseudoscalar mesons, there is no effect from including the collinear approximation for

the radiation. In addition figure 4c shows the radiation for an example, K∗0 → K±π∓, with

unequal masses for the decay products. Here we see that the lighter decay product is re-

sponsible for the more energetic photons, as we increase its mass (for illustrative purposes)

the distribution tends toward lower energies.

The total energy of the photonic radiation in the decays of some charged vector mesons

is shown in figure 5. As expected, for these decays the distributions behave in a similar
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Figure 5: The total energy (K0) of the photons radiated in the decays of charged vector mesons

to pseudoscalar mesons for the decays: (a) ρ± → π±π0; (b) K∗± → K±π0 and K∗± → K0π±.

In addition to using the real physical masses of the decay products we have included the effect of

varying the masses of the decay products.

way to those of the W boson, since they involve the same type of dipole. As with the

neutral vector meson decays there is no effect from including the collinear approximation

for the photon radiation as the decay products are pseudoscalar mesons
(

D̄ij ≡ 0
)

. The

K∗± decays show the effect of having unequal mass decay products.

For the leptonic decays of the charmonium resonances and the Υ resonance, the total

energy spectrum of the radiated photons is shown in figures 6 and 7 respectively. As for Z

decays, the effects of varying the τ mass are included to show the mass dependence of the

results. In the charmonium decays to τ+τ− pairs we see a suppression of QED radiation

since these decay modes are near the production threshold; for the physical τ mass, this

decay mode is not accessible in J/ψ decays, while for ψ (2s) and ψ (3770) it is just below

the threshold. The Υ resonance is significantly more massive and therefore the associated

photon energy spectrum more closely resembles that seen for the case of the Z boson.

These results show that the approach can be successfully applied to both perturbative

decays and non-perturbative hadronic decays.

5. Conclusions

In this paper we have presented a universal theoretical framework for calculating QED

radiative corrections to particle decays based on the YFS formalism [15] and the methods

of [33, 17, 18]. The essence of this approach is a reorganization of the perturbation series

to resum all soft divergent QED logarithms. This formalism led to the master formula

presented in (2.3).

The master formula forms the basis of the Monte Carlo event generator SOPHTY,

which provides QED radiative corrections for decays inside the HERWIG++ generator.

The Monte Carlo simulation takes into account large soft photon logarithms to all orders.

In addition, the leading collinear logarithms are included to O (α) by using the so-called

– 19 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
0

Figure 6: The total energy (K0) of the photons radiated in leptonic decays of charmonium res-

onances is shown above for J/ψ (a/d), ψ(2s) (b/e) and ψ(3770) (c/f). The distributions on the

left, figures (a), (b) and (c), are obtained by truncating the infrared residuals at O (1), whereas

in (d), (e) and (f), the dipole splitting functions are used to include the effects of hard collinear

photons. In addition to the real charged leptons we have included the effect of varying the τ mass

to illustrate the mass dependence of the results.

dipole splitting functions and inferring the associated virtual corrections with the aid of

the Bloch-Nordsieck and the KLN theorems.

Algorithms for the two basic “building-block” cases of dipoles comprising either two

final-state particles, or the initial-state particle and one of its decay products, are presented
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Figure 7: The total energy (K0) of the photons radiated in leptonic decays of the bottomonium

resonance Υ. The distribution on the left (a) is obtained by truncating the infrared residuals at

O (1), whereas in (b), the dipole splitting functions (Dij) are used to include the effects of hard

collinear emissions.

in section 2. Although integrals like that of the master equation can generally be readily

performed with conventional Monte Carlo methods to give weighted events, the manipu-

lations required in order to produce unweighted events with good efficiency (i.e. an event

generator) are non-trivial.

In designing these algorithms we were constrained by the requirement that the QED

radiation should be generated, as far as possible, independently of the details of the main

HERWIG++ program, which should provide the initial distribution of decay products.

This was made possible due to the form of the master equation, the universal nature of the

radiative corrections involved and our simplified crude distribution from which we initially

generate the photons. Care was taken to design the algorithms to keep event weights as

close to one as possible and to avoid numerical instabilities. Key to realising these features

are importance sampling techniques and, importantly, a careful choice of frame in which

to generate the radiation.

Our algorithm was tested successfully for several different types of particle decay pro-

duced by the HERWIG++ generator. In section 4 we have shown results for the important

cases of W and Z decays to various lepton species. In all cases the distributions show a

smooth and stable behaviour agreeing with our expectations. A preliminary comparison of

the total photon energy spectrum from the WINHAC generator shows good agreement and

provides a good check of our methods. The application of the program to both hadronic

and leptonic meson decays was also illustrated in section 4.

There are several possible extensions of this work, for instance, there are a number

phenomenologically important decays for which the full O (α) corrections are known e.g.

W and Z decays. As the code is designed to readily allow these corrections to be included

they will be implemented in the near future. In addition, there are a small number of

cases inside the HERWIG++ where we have to simulate multi (i.e. greater than two) body

decays and the extension of the algorithm to these cases would be useful. This is the first
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use of the YFS approach within the HERWIG++ program and there are a number of other

potential applications, for example initial - state radiation in lepton collisions, which may

be pursued in the future.

In conclusion, we have applied the YFS formalism to the simulation of QED radiation

in particle decays. The simulation, SOPHTY, based on the results of this work can simulate

QED radiation in a wide range of particle decays and will be available in the next version

of the HERWIG++ program.
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A. YFS form factors

In this appendix we give the expressions we calculate for the YFS form factors. For both the

final - final dipole form factor and the initial - final dipole form factor we use, βi = |~pi| /Ei

, to denote the velocity of particle i. Furthermore, in each case we have assumed that the

momenta obey p = p1 + p2.

A.1 Final-final dipoles

Below in (A.1) we have the YFS form factor for a pair of final state charged particles with

momenta p1, p2 whose combined momentum is p. Expression (A.1) is valid in the frame

~p1 = −~p2.

Y (p1, p2,Ω) = − α

2π
Z1Z2Ŷ (p1, p2,Ω)

Ŷ (p1, p2,Ω) =

(

4 − 2

(

1 + β1β2

β1 + β2

) (

ln

(

1 + β1

1 − β1

)

+ ln

(

1 + β2

1 − β2
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(

√

p2

2ω
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ln

(
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p2
1
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ln

(
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+

(

β2 − β1β2
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ln

(

β2 − β1β2

β1 + β2
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+

(

β1 + β1β2

β1 + β2
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ln

(

β1 + β1β2

β1 + β2

)

+

(

β1 − β1β2

β1 + β2

)

ln

(

β1 − β1β2

β1 + β2

)

+

(

β2 + β1β2

β1 + β2

)

ln

(

β2 + β1β2

β1 + β2

)

+
1 + β1β2

β1 + β2

(

1

2
ln2

(

β2 − β1β2

β1 + β2

)

− 1

2
ln2

(

β2 + β1β2

β1 + β2
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+
1 + β1β2

β1 + β2

(

1

2
ln2

(

β1 − β1β2

β1 + β2

)

− 1

2
ln2

(

β1 + β1β2

β1 + β2
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−1 + β1β2

β1 + β2

(

2Li2
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−1 − β1
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2Li2

(

2β1
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−1 + β1β2

β1 + β2

(

ln

(

1 − β1

2β1
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ln
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1 + β1

2β1
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+ ln
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ln
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− ln

(
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ln
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(
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(
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(
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1

2
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1 + β1

)

+
1

2
ln2

(

1 − β2
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(A.1)

We have checked that for the case β1 = β2, in the limit β1 → 1, expression (A.1) reduces

to

Y (p1, p2,Ω) = −α

π
Z1Z2

(

2 ln

(

2ω
√

p2

)

(

ln

(

p2

p2
1

)

− 1

)

+
1

2
ln

(

p2

p2
1

)

− 1 +
π2

3

)

, (A.2)

in agreement with the previously obtained results [19].

A.2 Initial-final dipoles

In equation (A.3) we have the YFS form factor for a pair of charged particles of momentum

p and p1, (p2 = p − p1), evaluated in the rest frame of p.

Y (p, p1,Ω) =
α

2π
ZpZ1Ŷ (p, p1,Ω)

Ŷ (p, p1,Ω) = ln

(

p2

4ω2

)
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(
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(
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(

p4
2

p2p2
1

)

− 1

β1
ln
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+

(
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(
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. (A.3)

We use Zp to denote the charge on the particle with momentum p. For the special case

that (p − p2)
2 is zero, as in leptonic W± decay with a massless neutrino, we use the a more

– 23 –



J
H
E
P
0
7
(
2
0
0
6
)
0
1
0

specialized compact form, to avoid potential numerical problems:

Y (p, p1,Ω) =
α

2π
ZpZ1Y (p, p1,Ω)

Ŷ (p, p1,Ω) = ln

(

p2

4ω2

)

+ ln

(
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1

4ω2
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ln
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+
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ln
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−
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ln

(
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− 1

β1
ln

(
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1 + β1

)

+ 1

+
1

2β1
ln2

(

1 − β1

2β1

)

− 1

2β1
ln2

(

1 + β1

2β1

)

− 1

2β1
ln2

(

1 − β1

1 + β1

)

− 2

β1
Li2

(

2β1

1 + β1

)

. (A.4)

We have checked, analytically, that in the limit β2 → 1 the virtual contributions

(ReB (p, p1)) to Y (p, p1,Ω) inside (A.3) are equal to those in (A.4). In both cases the

real contributions are identical, they do not involve β2, naturally as these contributions

should only involve the moving charge in the dipole. Finally, as a check we observe that,

dropping terms smaller than O
(

p2
1/p

2
)

the form factor (A.4) agrees exactly with the cor-

responding expression in [21].

B. Generation of the dipole distributions

In this appendix we describe how to generate the photon momenta from the dipole radiation

functions.

B.1 Final-final dipoles

Consider the integral of the dipole function in the rest frame of p1 + p2

∫

d3k

k0
S̃ (p1, p2, k) =

α

4π2
Z1Z2

∫

dcdφdk0k0

(

p1

p1 · k
− p2

p2 · k

)2

. (B.1)

We choose to define the photon momenta as being with respect to p1, with c ≡ cos θ i.e.

p1 · k = E1k0 (1 − β1c) ,

p2 · k = E2k0 (1 + β2c) .
(B.2)

Using this representation of the momenta the integral can be rewritten as
∫

d3k

k0
S̃ (p1, p2, k) = − α

4π2
Z1Z2

∫

dcdφd ln k0

×
(

− 1 − β2
1

(1 − β1c)
2 +

2 (1 + β1β2)

(1 − β1c) (1 + β2c)
− 1 − β2

2

(1 + β2c)
2

)

. (B.3)

The photon momenta can be generated according to this distribution in the following way.

1. First the magnitude of the photon’s momentum is generated logarithmically between

ω, the minimum photon energy cut-off, and the maximum possible photon energy,

Emax, i.e.

k0 = ω

(

Emax

ω

)R
, (B.4)
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where R is a random number uniformly distributed between 0 and 1. As the photon

momenta are generated in the rest frame of the dipole the maximum energy of the

photon is

Emax =
M

2

(

M

m1 + m2
− m1 + m2

M

)

. (B.5)

2. The azimuthal angle φ is randomly generated between 0 and 2π.

3. The generation of the polar angle θ is more complicated. The polar angle is generated

by only using the interference term i.e. neglecting mass terms. This term is first

rewritten

1

(1 − β1c) (1 + β2c)
=

β1β2

β1 + β2

(

1

β2 (1 − β1c)
+

1

β1 (1 + β2c)

)

. (B.6)

The angle can then be generated according to this distribution by generating the

angle according to the distribution (1 − β1c)
−1 with probability

P1 =
ln

(

1+β1

1−β1

)

ln
(

1+β1

1−β1

)

+ ln
(

1+β2

1−β2

) (B.7)

and according to the distribution (1 + β2c)
−1 with probability P2 = 1 − P1.

The full distribution can easily be generated using rejection techniques, the rejection

weight

W =

(

− 1−β2

1

(1−β1c)
2 + 2(1+β1β2)

(1−β1c)(1+β2c)
− 1−β2

2

(1+β2c)2

)

2(1+β1β2)
(1−β1c)(1+β2c)

≤ 1 (B.8)

is less than one.

In practice we sometimes choose not to generate the angle according to the full distri-

bution initially i.e. we postpone the latter rejection step until the event is generated

in full. This is because the inclusion of the mass terms leads to a depletion of ra-

diation in the direction of the charged particles, the “dead-cone” [44]. However this

dead-cone can be filled by hard radiation and if the β̄1
1 corrections are included. In

this case, if the generation of the angles is done according to the full distribution, the

algorithm becomes very inefficient.

In order to calculate the crude distribution we require the average photon multiplicity,

which is given by the integral of the dipole function

∫

d3k

k0
S̃ (p1, p2, k)

= −α

π
Z1Z2 ln

(

Emax

ω

)((

1 + β1β2

β1 + β2

)

ln

(

(1 − β1) (1 − β2)

(1 + β1) (1 + β2)

)

− 2

)

full distribution,

= −α

π
Z1Z2

(

1 + β1β2

β1 + β2

)

ln

(

Emax

ω

)

ln

(

(1 − β1) (1 − β2)

(1 + β1) (1 + β2)

)

neglecting mass terms.

(B.9)
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B.2 Initial-final dipoles

Consider the integral of the dipole function in the rest frame of p

∫

d3k

k0
S̃ (p, p1, k) = − α

4π2
ZpZ1

∫

dcdφdk0k0

(

p

p · k − p1

p1 · k

)2

, (B.10)

where Zp denotes the charge on the decaying particle. As before we choose to define the

photon momenta as being with respect to p1 hence the integral may be rewritten

∫

d3k

k0
S̃ (p, p1, k) =

α

4π2
ZpZ1

∫

dcdφd ln k0
β2

1

(

1 − c2
)

(1 − β1c)
2 . (B.11)

The photon energy and azimuthal angle are generated in exactly the same way as in

appendix (B.1) with the exception that now, to guarantee the possibility of conserving

momentum in the decaying particle’s rest frame, the maximum all,owable energy of the

photons is

Emax =
M

2

(

1 − (m1 + m2)
2

M2

)

. (B.12)

The generation of the polar angle θ is more straightforward than for the final-final

dipole. Omitting the mass terms p2
1 and p2 in (B.10) leads to the replacement

β2
1

(

1 − c2
)

(1 − β1c)
2 → 2

1 − β1c
, (B.13)

which may be generated by the simple mapping

c =
1

β1

(

1 − (1 + β1)

(

1 − β1

1 + β1

)R
)

. (B.14)

The full distribution can be recovered by weighting and rejecting the events from this

approximate distribution, with weight

W =
β2

1

(

1 − c2
)

2 (1 − β1c)
≤ 1. (B.15)

As with the final-final dipole the integral of the dipole function gives the average photon

multiplicity for Γcrude:

∫

d3k

k0
S̃ (p, p1, k)

=
α

π
ZpZ1 ln

(

Emax

ω

)(

1

β1
ln

(

1 + β1

1 − β1

)

− 2

)

full distribution

=
α

π
ZpZ1 ln

(

Emax

ω

)(

1

β1
ln

(

1 + β1

1 − β1

))

neglecting mass terms.

(B.16)
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